22. [Exploring Geometry]

Skill 22.1 Naming and labeling geometric plane shapes.

- Label, with capital letters, any plane geometric shape by starting at one vertex and moving to the next adjacent vertex, without skipping any vertex.
- Use a color code to count all the different types of shapes inside a diagram, or count by size.

1

Skill 22.3 Describing location on a map (1).

- On a geographic map: . - follow the horizontal latitude and vertical longitude lines to describe the location of a point. Hints: The vertical longitude lines on a map are called meridians. Lonaitude is usually given in degrees and minutes East or West. The horizontal latitude lines on a map are called parallels. Latitude is usually given in degrees and minutes South or North. North 750 50 45 East Equator 30 Parallels 45 60° 90° South On a weather map:
 - read the value indicated on an isobar to describe the location of any point situated on or inside that isobar.
 - **Q.** To the nearest five degrees, what is the latitude and longitude of Jonesboro, Arkansas?

A. The parallel (horizontal line) closest to Jonesboro represents 35° north latitude. Jonesboro is located on the 90° west longitude line (meridian). To the nearest five degrees, Jonesboro is located at 35°N latitude and 90°W longitude.

a) Which continent would you be in if you are located at 75° south latitude and 40° east longitude?

b) How many degrees latitude are between Montreal (Canada) and Brisbane (Australia)?

Skill 22.3 Describing location on a map (2).

c) How can the UV index be described for Canberra at noon on the 26th March 2011?

AUSTRALIA - FORECAST CLEAR SKY UV INDEX NOON MON 26 MAR 2011

e) Of the lines of longitude shown, between which two lines is Bolivia mainly situated?

d) What kind of surface pressure is shown above Detroit on this map?

f) Name the province in Burundi where the 4°S parallel intersects the 30°E meridian.

g) On this radar screen, what is the altitude of the helicopter?

continues on page 263

Skill 22.5 Drawing translations, reflections and rotations on a grid or coordinate plane (1).

- To draw a shape translated on a grid: move it up (positive, vertically), down (negative, vertically), left (negative, horizontally) or right (positive, horizontally) on the grid, without flipping, turning or changing its size.
- To draw a shape reflected in a given line (mirror line):
 draw a perpendicular line to the mirror line from each vertex of the shape
 - extend the perpendicular line beyond the mirror line by the same distance
 - plot and join the reflected points.
- To draw a shape rotated by a given angle about a point (center of rotation):
 rotate each vertex by the given angle, in the given direction
 - plot and join the rotated points.
- **Q.** Draw the reflection of the trapezoid *ABCD* in the line of equation x = 0

- **A.** Reflect A, B, C and D in the mirror line x = 0: A is one unit to the right of line x = 0
 - \Rightarrow draw A' one unit to the left of line x = 0.

A'B'C'D' is the reflection of ABCD in the line x = 0

a) Redraw this shape translated 6 units to the left and 4 units down.

c) Redraw this shape translated 7 units to the left and 1 unit up.

b) Redraw this shape reflected in the line shown.

d) Redraw this triangle rotated 90° about point *O* in an anticlockwise direction.

Skill 22.5 Drawing translations, reflections and rotations on a grid or coordinate plane (1).

e) Redraw this shape reflected in the line shown.

g) Redraw the triangle *EFG* rotated about point F by 180°.

i) Draw the reflection of the parallelogram JKLM in the line of equation y = x + 2

f) Redraw this shape rotated 180° about point *O* in a clockwise direction.

			0			

h) Redraw the rectangle *ABCD* after translating it -6 units horizontally and -5 units vertically.

j) Redraw the quadrilateral NOPQ rotated about point Q by 180° in an anticlockwise direction.

2 3 2 3 **Skill 22.6** Recognizing and drawing enlargements and reductions on a grid or a coordinate plane. Use the definitions of enlargement, reduction, factor of enlargement and factor of reduction. (see Glossary) **Q.** Find the scale factor of enlargement for the **A.** *The length and width of the rectangle ABCD* rectangle ABCD. have doubled in the enlargement. Scale factor of enlargement = 2C 4 5 6 7 8 9 10 xFind the scale factor of reduction for the Find the scale factor of reduction for the a) b) parallelogram ABCD. triangle DEF. А D F D D Aʻ c) Redraw this shape enlarged by a factor of 3. d) Redraw this shape reduced by a factor of 2. triple all the side lengths of the shape Redraw this rhombus enlarged by a scale factor f) Redraw this shape reduced by a scale factor of 3 e) of 3 about the origin of the axes. about the origin of the axes. 5 -6 -5 3 - 3 -2 4 -3 _'2 4 Ż Ż 4 Ś 8 10 x0 6 7 9 -5

Skill 22.7 Working with scales on a map.

- Put a piece of paper (or ruler) along the distance to be measured.
- Mark the start and end points on the paper.
- Place the paper against the scale matching the starting points.
- Slide the paper across the length of the scale marking the start and end points as you go.
- Add together the scale lengths covered.

a) Use the scale to find the distance from Düsseldorf to Arnsberg.

c) Use the scale to find the distance from Nome to Tok.

3

b) Use the scale to find the distance from Townsville to Abington Reef.

d) What is the length of the low hanging sprinkler pipe at Boston Center for the Arts?

Skill 22.9 Recognizing congruence of two-dimensional shapes.

- Use the **postulates for congruence** to check if two shapes are congruent (same size and shape).
 - 1. Side-side-side (SSS)

3. Angle-side-angle (ASA)

Q. Which congruence postulate (SSS, SAS, ASA, HL) can be applied to show that triangle *AOB* is congruent to triangle *COD*?

a) Find the value of x given the pair of shaded triangles are congruent.

c) Find the values of x and y in this pair of congruent triangles.

e) Which congruence postulate (SSS, SAS, ASA) can be applied to show that these triangles are congruent?

2. Side-angle-side (SAS)

4. Hypotenuse-leg (HL)

A. $\overline{AB} \cong \overline{CD}$ (hypotenuse) $\overline{AO} \cong \overline{OC}$ (leg) $\Rightarrow \Delta AOB \cong \Delta COD$

These triangles are congruent based on the congruence postulate hypotenuse-leg, **HL**

b) Find the value of x given the pair of shaded triangles are congruent.

d) Find the value of x° in this pair of congruent triangles.

f) Which congruence postulate (SSS, SAS, ASA) can be applied to show that these triangles are congruent?

3

Skill 22.10 Recognizing similarity of two-dimensional shapes.

Measure the size of the angles. Two shapes are similar if they have corresponding angles the • same size.

OR

Measure the size of the sides. Two shapes are similar if they have corresponding sides • proportional (each pair of corresponding sides is in the same ratio as every other pair).

Corresponding angles are congruent:

 $\angle A \cong \angle D$ and $\angle B \cong \angle E$ and $\angle C \cong \angle F$

Corresponding sides are proportional:

 $\frac{AB}{DE} = \frac{BC}{EE} = \frac{AC}{DE}$

To find the value of an unknown side:

- Locate two pairs of corresponding sides; one pair should involve the unknown side. •
- Set up the proportion (two equal ratios written as an equation). •
- Solve the equation to find the value of the unknown.

Complete the pairs of congruent angles for these a) similar triangles.

c) Find the value of x. [All measurements are in cm.]

Complete the ratios of corresponding sides for b) these similar triangles.

x =

